β-Secretases, Alzheimer's Disease, and Down Syndrome

نویسندگان

  • Robin L. Webb
  • M. Paul Murphy
چکیده

Individuals with Down Syndrome (DS), or trisomy 21, develop Alzheimer's disease (AD) pathology by approximately 40 years of age. Chromosome 21 harbors several genes implicated in AD, including the amyloid precursor protein and one homologue of the β-site APP cleaving enzyme, BACE2. Processing of the amyloid precursor protein by β-secretase (BACE) is the rate-limiting step in the production of the pathogenic Aβ peptide. Increased amounts of APP in the DS brain result in increased amounts of Aβ and extracellular plaque formation beginning early in life. BACE dysregulation potentially represents an overlapping biological mechanism with sporadic AD and a common therapeutic target. As the lifespan for those with DS continues to increase, age-related concerns such as obesity, depression, and AD are of growing concern. The ability to prevent or delay the progression of neurodegenerative diseases will promote healthy aging and improve quality of life for those with DS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Greek Tragedy: The Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis.

Proteolysis of the amyloid precursor protein (APP) liberates various fragments including the proposed initiator of Alzheimer disease-associated dysfunctions, amyloid-β. However, recent evidence suggests that the accepted view of APP proteolysis by the canonical α-, β-, and γ-secretases is simplistic, with the discovery of a number of novel APP secretases (including δ- and η-secretases, alternat...

متن کامل

Recent Perspectives on APP, Secretases, Endosomal Pathways and How they Influence Alzheimer’s Related Pathological Changes in Down Syndrome

Down syndrome is one of the most common genetic conditions occurring in one in 700 live births. The trisomy of chromosome 21 causes over-expression of APP which in turn is indicated in the increased production of Aβ associated with AD. This makes DS the most common presenile form of AD exceeding PS1 and PS2 FAD. Since a majority of DS individuals develop dementia, it is important to examine whe...

متن کامل

Impacts of Membrane Biophysics in Alzheimer's Disease: From Amyloid Precursor Protein Processing to Aβ Peptide-Induced Membrane Changes

An increasing amount of evidence supports the notion that cytotoxic effects of amyloid-β peptide (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD), are strongly associated with its ability to interact with membranes of neurons and other cerebral cells. Aβ is derived from amyloidogenic cleavage of amyloid precursor protein (AβPP) by β- and γ-secretase. In the nonamyloidoge...

متن کامل

Consequences of Inhibiting Amyloid Precursor Protein Processing Enzymes on Synaptic Function and Plasticity

Alzheimer's disease (AD) is a neurodegenerative disease, one of whose major pathological hallmarks is the accumulation of amyloid plaques comprised of aggregated β-amyloid (Aβ) peptides. It is now recognized that soluble Aβ oligomers may lead to synaptic dysfunctions early in AD pathology preceding plaque deposition. Aβ is produced by a sequential cleavage of amyloid precursor protein (APP) by ...

متن کامل

Mechanisms of Melatonin in Alleviating Alzheimer’s Disease

Alzheimer's disease (AD) is a chronic, progressive and prevalent neurodegenerative disease characterized by the loss of higher cognitive functions and an associated loss of memory. The thus far "incurable" stigma for AD prevails because of variations in the success rates of different treatment protocols in animal and human studies. Among the classical hypotheses explaining AD pathogenesis, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012